Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism.
نویسندگان
چکیده
The propensity of a range of parasitic helminths to stimulate a Th2 or regulatory cell-biased response has been proposed to reduce the severity of experimental inflammatory bowel disease. We examined whether infection with Schistosoma mansoni, a trematode parasite, altered the susceptibility of mice to colitis induced by dextran sodium sulfate (DSS). Mice infected with schistosome worms were refractory to DSS-induced colitis. Egg-laying schistosome infections or injection of eggs did not render mice resistant to colitis induced by DSS. Schistosome worm infections prevent colitis by a novel mechanism dependent on macrophages, and not by simple modulation of Th2 responses, or via induction of regulatory CD4+ or CD25+ cells, IL-10, or TGF-beta. Infected mice had marked infiltration of macrophages (F4/80+CD11b+CD11c(-)) into the colon lamina propria and protection from DSS-induced colitis was shown to be macrophage dependent. Resistance from colitis was not due to alternatively activated macrophages. Transfer of colon lamina propria F4/80+ macrophages isolated from worm-infected mice induced significant protection from colitis in recipient mice treated with DSS. Therefore, we propose a new mechanism whereby a parasitic worm suppresses DSS-induced colitis via a novel colon-infiltrating macrophage population.
منابع مشابه
Macrophage-Mediated Mechanism Experimental Colitis via a Infection with a Helminth Parasite Prevents
متن کامل
Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric Citrobacter rodentium and enhances Citrobacter-induced colitis in mice.
Infections with intestinal helminth and bacterial pathogens, such as enteropathogenic Escherichia coli, continue to be a major global health threat for children. To test the hypothesis that intestinal helminth infection may be a risk factor for enteric bacterial infection, a murine model was established by using the intestinal helminth Heligomosomoides polygyrus. To analyze the modulatory effec...
متن کاملAntibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL-4Rα-Independent Alternative Differentiation of Macrophages
Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obs...
متن کاملAlternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis.
The distribution of several pathogenic helminth infections coincides geographically with many devastating microbial diseases, including enteric bacterial infections. To dissect the mechanisms by which helminths modulate the host's response to enteric bacteria and bacteria-mediated intestinal inflammation, we have recently established a coinfection model and shown that coinfection with the helmi...
متن کاملHelminth infection impairs autophagy-mediated killing of bacterial enteropathogens by macrophages.
Autophagy is an important mechanism used by macrophages to kill intracellular pathogens. The results reported in this study demonstrate that autophagy is also involved in the macrophage killing of the extracellular enteropathogen Citrobacter rodentium after phagocytosis. The process was significantly impaired in macrophages isolated from mice chronically infected with the helminth parasite Heli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 178 7 شماره
صفحات -
تاریخ انتشار 2007